

高精度动态白光干涉测量方法

毕书贤,段明亮,宗毅,于彩芸,李建成*

南京理工大学电子工程与光电技术学院, 江苏南京 210094

摘要 白光干涉测量技术具有精度高和非接触式测量的优点,是超精密加工领域中的一项重要测量手段。针对白光干涉测量技术容易受环境振动影响的问题,提出了一种动态垂直扫描干涉测量方法(DVSI)。该方法将白光干涉光路分为两个成像通道,得到与白光干涉图同步移相的准单色光干涉图。通过相位-倾斜迭代方法(PTI)对准单色光干涉图进行处理得到实际的移相扫描位置,对白光干涉信号进行相干峰位置的定位,并计算出粗糙的形貌分布,之后利用局部最小二乘方法(LLS)计算出精细的相位分布,将粗糙形貌以及精细相位相结合来复原出待测件的三维形貌。本研究通过数值仿真和实验对比对该方法进行了验证,结果表明本方法具有较好的抗振性能。
 关键词 测量;白光干涉;抗振动测量;相位-倾斜迭代;局部最小二乘
 中图分类号 O436 文献标志码 A

High-Precision Dynamic White-Light Interferometry

Bi Shuxian, Duan Mingliang, Zong Yi, Yu Caiyun, Li Jianxin[®] School of Electronic and Optical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China

Abstract White-light interferometry has the advantages of high accuracy and non-contact measurement, which is an important measurement method in the field of ultra-precision machining. To tackle the problem that white-light interferometry is easily affected by environmental vibration, dynamic vertical scanning interferometry (DVSI) is proposed. This method divides the white-light interferometric optical path into two imaging channels to generate a quasi-monochromatic light interferogram, which is phase-shifted synchronously with the white-light interferogram. We obtain the actual phase-shift scanning position by processing the quasi-monochromatic light interferogram through the phase-tilt iteration (PTI), after which the coherence peak of the white-light interference signal is located and the coarse topographic distribution is calculated. The local least square (LLS) is used to calculate the fine phase distribution. The coarse topographic distribution and fine phase distribution are combined to recover the three-dimensional topography of the tested sample. The method is verified through numerical simulation and experimental comparison, and the results show that the method has good vibration-resistant performance.

Key words measurement; white-light interferometry; vibration-resistant measurement; phase-tilt iteration; local least square

1 引 言

白光干涉测量技术(WLI)具有精度高和非接触 式测量的优点,现已被广泛应用于材料科学、航空航 天、天文望远镜、芯片、微机械、微光学等多种领域的 加工制造与科学研究^[1-8]。通常情况下,WLI 在垂 直扫描测量过程中需要确保干涉信号的采样间隔相 等,才能较好地复原出待测形貌^[9-16]。但在实际的 测量过程中,现场环境以及光机结构的振动会引入 随机的倾斜相位,导致同一帧干涉图中每个像素点 的采样间隔都会产生随机的变化,使得白光干涉信 号发生畸变,造成零光程差位置的定位不准确从而

基金项目:国家自然科学基金(U2031131,61975079)、装备预研重点实验室基金(6142604200511) 通信作者:*ljx@vip.163.com

收稿日期: 2021-07-09; 修回日期: 2021-08-25; 录用日期: 2021-09-01

研究论文

无法获取正确的待测件形貌信息。因此,WLI 对环 境振动的敏感性,导致该技术很难应用于工业环境 的在位测量中。

针对这个问题,研究人员提出了一些白光干涉 抗振动测量的解决方法。例如, VEECO 公司提出 在白光干涉光路中增加一路激光干涉通道,其中,白 光干涉通道提供测试信号,激光干涉通道提供参考 信号[17]。通过最小二乘椭圆拟合算法分别拟合出 参考信号的正弦分量及余弦分量,使用这两个正交 分量来计算参考信号的相位,并利用该相位解算出 实际扫描位置,之后将实际扫描位置与测试信号代 入质心法中计算出待测物体的高度。该方法具有一 定的抗振能力,但无法适用于振动较大的环境。他 们还提出设置两个或多个相互正交的检测器用于参 考信号的监测,但该方法对装置的硬件要求较 高^[18]。ZYGO公司也提出了在白光干涉仪中增加 激光干涉仪进行扫描位置的检测,再利用他们所提 的"J矩阵法"校正白光干涉数据,最后解算出待测 物体的形貌信息^[19]。由于"J矩阵法"采用了类似非 均匀傅里叶变换的处理思想,因此对于振动误差是 完全随机分布的干涉信号,其计算精度仍然受到较 大影响。Bruker 公司提出了一种高精度的垂直扫 描干涉测量方法(HDVSI)^[20]。该方法采用包络信 息和相位信息相结合的思路,先计算出白光干涉信 号的相干包络峰值位置以提供低分辨率的表面轮廓 信息,之后采用正交解调方法对干涉条纹进行处理 得到不受包络峰值位置偏差影响且精度较高的相位 信息,将轮廓信息及相位信息相结合解算出待测物 体的形貌信息。HDVSI 能够实现亚纳米精度的测 量,但是在较大振动的环境下,测量结果会存在较大 的波纹误差。德国卡塞尔大学也提出了一种白光干 涉测量的振动补偿方法^[21-22]。在相等时间间隔的条 件下同时采集白光干涉信号以及激光干涉信号,之 后采用离散傅里叶变换对激光干涉信号进行处理得 到实际扫描位置,根据实际扫描位置对白光干涉信 号进行重新排序,并利用线性插值或三角多项式插 值来对重新排序后的白光干涉信号进行校正得到规 则的白光干涉信号。如果先后两幅干涉信号之间的 扫描间隔误差太大,信号插值的性能就会下降,最终 影响测量结果的精度。

因此,本研究提出了一种新的白光干涉抗振动 测量方法,在白光干涉光路中增加一个窄带滤光干 涉成像通道,先计算出振动环境下的实际扫描位置 来提取白光干涉信号的相干峰值位置以及较为精确 的相位信息,再将二者结合来复原出待测物体的形 貌分布。

2 动态白光干涉测量的原理和方法

2.1 双通道干涉光路

本研究所使用的干涉光路形式如图 1 所示。 LED 点光源发出的白光经过透镜 L1 后在孔径光阑 S 处会聚,之后通过透镜 L2 变为准直光束。该光束 经过分束镜 BS1 反射进入 Mirau 型的干涉显微物 镜 MO 后被分为两束,一束经参考镜反射,另一束 入射至待测件 O 被反射,两束反射光重新汇合后形 成干涉光束。干涉光束透过分束镜 BS1 和管镜 L3 之后被分束镜 BS2 分为两路,一路由主通道面阵探 测器 D1 接收得到白光干涉图,另一路经过窄带滤 光片 F 后被副通道面阵探测器 D2 接收得到准单色 光干涉图。将压电陶瓷(PZT)配置在物镜 MO 上 进行移相,在移相过程中两个通道的探测器同步采 集干涉图。其中,准单色光干涉图用于检测实际的 移相扫描位置,白光干涉图将结合实际移相扫描位 置来解算待测件 O 的形貌分布。

本研究所提的干涉信号处理算法如图 2 所示。 利用相位-倾斜迭代法(PTI)对准单色光干涉图进行 处理得到倾斜相位平面,进而计算出干涉图上每个 像素点的实际移相扫描位置。通过扫描位置找出白 光干涉信号的相干峰位置并得到粗糙的形貌分布。 通过局部最小二乘法(LLS)对相干峰位置附近的一 系列干涉图进行处理来提取精细的相位分布。最后 将所得的粗糙形貌以及精细相位相结合来复原待测 物体的三维形貌分布。下面内容将对该方法的处理 步骤进行详细描述。

图 2 形貌复原的算法流程示意图 Fig. 2 Flow chart of the surface recovery algorithm

2.2 振动倾斜相位平面的迭代计算

设副通道采集的准单色光干涉光强为

$$J_n(x,y,z) = A(x,y) +$$

$$B(x,y)\cos[\phi(x,y) + p_n(x,y,z)],$$
 (1)
式中,(x,y)对应干涉图上每个像素点的坐标位置。

为了方便描述,下文把坐标符号(*x*,*y*)省略。*z*为物体扫描方向的高度,*n*为干涉图的序号,*A*为背景强度,*B*为对比度,*o*为在单色光测量下的相位分布。*p*,为准单色光干涉图的振动倾斜相位平面,可表示为

$$p_n = \alpha_n x + \beta_n y + \delta_n , \qquad (2)$$

式中, α_n 和 β_n 分别为x方向和y方向的倾斜系数, δ_n 为平动移相量。

在白光干涉测量当中,如果振动倾斜相位平面 p_n能够被精确地计算出来,则待测物体的三维形貌 就可以被复原出来。本研究采用相位-倾斜迭代方 法 PTI 来求解振动倾斜相位的系数^[23]。在处理过 程中,将干涉图分解为 x 和 y 两个方向的一维信号 分别进行计算。以 x 方向的干涉信号为例,主要计 算过程如下:

1)利用已知的 α_n^k 和 $\delta_{n,x}^k$ 来计算背景强度A、 对比度 B 以及相位 ϕ 。将 α_n^k 和 $\delta_{n,x}^k$ 看作已知量,采 用线性最小二乘的方法来对A、B 以及 ϕ 进行求解。 其中, α_n^k 和 $\delta_{n,x}^k$ 为第k次迭代后得到的倾斜系数;

2) 将第一步中得到的 A, B, ϕ 以及 α_n^k 看作已 知量来计算 α_n^{k+1} 和 $\delta_{n,x}^{k+1}$ 。利用空间矢量变换对相 位倾斜量 $p_{n,x}$ 进行解耦操作,引入坐标变换w= $x+\omega,(w=1,2,\dots,W),将相位倾斜量中与空间坐$ $标无关的常量 <math>p_{n,x}(\omega)$ 分解出来。其中,x 代表了 空间坐标,w 是与空间坐标无关的常量。则区域 w 内干涉光强可表示为

$$J_{n}(\omega) = A(\omega) + B(\omega) \cos[\phi(\omega) + \alpha_{n}x + p_{n,x}(\omega)]_{\circ}$$
(3)

由于 $p_{n,x}(\omega) = \alpha_n \omega + \delta_{n,x}$ 是与空间坐标无关 的常量,因此可以建立求解 $p_{n,x}(\omega)$ 的线性方程组。 令 $c_n(\omega) = \cos p_{n,x}(\omega), s_n(\omega) = \sin p_{n,x}(\omega), v(w) = \phi(w) + \alpha_n x$,建立线性方程组

$$J_{n}(w) - A(w) = B(w)c_{n}(\omega)\cos v(w) - B(w)s_{n}(\omega)\sin v(w).$$
(4)

将 α_n^k 代入v(w)中,此时A(w)、B(w)以及 v(w)均为已知量,因此可以采用线性最小二乘法来 对 $c_n(\omega)$ 和 $s_n(\omega)$ 进行求解,由此得到 $p_{n,x}(\omega)$ 、 α_n^{k+1} 和 $\delta_{n,x}^{k+1}$

$$p_{n,x} = \arctan\left[-\frac{s_n(\omega)}{c_n(\omega)}\right], \qquad (5)$$

$$\alpha_n^{k+1} = \frac{1}{W} \sum_{\omega=1}^{W} \arctan\left[\frac{\sin\Delta p_{n,x}(\omega)}{\cos\Delta p_{n,x}(\omega)}\right], \quad (6)$$

$$\delta_{n,x}^{k+1} = p_{n,x}(0), \qquad (7)$$

式中, $\Delta p_{n,x}(\omega) = p_{n,x}(\omega+1) - p_{n,x}(\omega)$ 。

重复上述两个步骤直到 α_n 和 $\delta_{n,x}$ 达到收敛。 上述算法的流程图如图 3 所示。

利用同样的方法对 y 方向的干涉信号进行迭 代处理,即可得到系数 β_n 和 $\delta_{n,y}$,则平动移相量为 $\delta_n = (\delta_{n,x} - \beta_n x)/2 + (\delta_{n,y} - \alpha_n y)/2$ 。将求得的系 数 α_n 、 β_n 及 δ_n 代入(2)式中得到倾斜相位平面 p_n , 即可求出实际的扫描位置

$$S_n = \frac{\lambda_f}{4\pi} p_n, \qquad (8)$$

式中 λ_f 为窄带滤光片的中心波长。

2.3 待测形貌的局部最小二乘计算

设主通道采集的白光干涉光强为

 $I_n(x,y,z) = A(x,y) +$

 $B_n(x,y,z)\cos[\varphi(x,y) + q_n(x,y,z)],$ (9) 式中,A 为背景光强, B_n 为受扫描位置调制的对比 度, φ 为待测物体的相位分布, $q_n = S_n 4\pi/\lambda_c$ 为白光

干涉图的振动倾斜相位, λ。为白光光源的中心波长。

通过实际扫描位置计算出待测件的粗糙形貌 分布

$$Z_{\rm c} = \frac{\sum_{i} (I_{i+1} - I_{i})^{2} S_{i}}{\sum_{i} (I_{i+1} - I_{i})^{2}},$$
 (10)

式中,S_i为第*i*帧干涉图所对应的实际扫描位置。

将干涉图中每个像素点对应的粗糙形貌高度与 实际扫描位置进行比较,找出实际扫描位置与形貌 高度最相近时对应的采样点 n。将采样点 n 作为相 干峰位置,在其左右两边各取 m 个采样点,构成局 部采样区间[n-m,…,n,…,n+m]。

假设在上述的局部采样区间内,白光干涉信号 的调制对比度呈高斯分布

 $B_n = b \exp[-\gamma(\varphi + q_n)^2],$ (11) 式中,b 为干涉图的最大振幅。令光源的谱段宽度 为 Δλ,系数 γ 可表示为

$$\gamma = \frac{(\lambda_c \Delta \lambda)^2}{4 \ln 2(\lambda_c^2 - \Delta \lambda^2)^2},$$
 (12)

对调制对比度进行二阶泰勒展开可以得到

$$B_n \cong b \exp(-\gamma \varphi^2) - 2\gamma \varphi \exp(-\gamma \varphi^2) q_n + \frac{1}{2}$$

 $[2\gamma^{2}\varphi^{2}\exp(-\gamma\varphi^{2})-\gamma\exp(-\gamma\varphi^{2})]q_{n}^{2},$ (13) 则局部采样区间内的白光干涉强度可以表示为

$$I_n = A + (C_1 + C_2 q_n + C_3 q_n^2) \cos(\varphi + q_n),$$

(14)

式中, C_1 、 C_2 、 C_3 为关于 q_n 的零阶、一阶、二阶的 系数

$$C_1 = b \exp(-\gamma \varphi^2), \qquad (15)$$

$$C_2 = -2b\gamma\varphi\exp(-\gamma\varphi^2), \qquad (16)$$

$$C_{3} = b \left[2\gamma^{2} \varphi^{2} \exp(-\gamma \varphi^{2}) - \gamma \exp(-\gamma \varphi^{2}) \right]_{\circ}$$

将(14)式中的白光干涉强度展开得到

$$I_n = A_1 + A_2 \cos q_n + A_3 \sin q_n + A_4 q_n \cos q_n +$$

 $A_{5}q_{n}\sin q_{n} + A_{6}q_{n}^{2}\cos q_{n} + A_{7}q_{n}^{2}\sin q_{n}, \quad (18)$ 式中, $A_{1} = A$, $A_{2} = C_{1}\cos\varphi, A_{3} = -C_{1}\sin\varphi, A_{4} = C_{2}\cos\varphi, A_{5} = -C_{2}\sin\varphi, A_{6} = C_{3}\cos\varphi, A_{7} = -C_{3}\sin\varphi.$ 利用已知量 q_{n} 和 $I_{n},$ 采用最小二乘法来对系数 A_{n} 进行求解

$$\boldsymbol{A} = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{I}_{\circ}$$
(19)

(19)式中的各个量分别为

$$\mathbf{I} = \begin{bmatrix} I_{n-m}, \cdots, I_n, \cdots, I_{n+m} \end{bmatrix}^{\mathrm{T}},$$
(20)

$$- \lfloor \mathbf{A}_1 \quad \mathbf{A}_2 \quad \mathbf{A}_3 \quad \mathbf{A}_4 \quad \mathbf{A}_5 \quad \mathbf{A}_6 \quad \mathbf{A}_7 \rfloor ,$$

$$(21)$$

$$\boldsymbol{X} = \begin{bmatrix} 1 & \boldsymbol{u} & \boldsymbol{v} & \boldsymbol{q} \circ \boldsymbol{u} & \boldsymbol{q} \circ \boldsymbol{v} & \boldsymbol{Q} \circ \boldsymbol{u} & \boldsymbol{Q} \circ \boldsymbol{v} \end{bmatrix},$$
(22)

式中,符号"。"为 Hadamard 积的运算,其定义为两 个同型矩阵的逐元素对应相乘。矩阵 *X* 中的子矩 阵分别为: $q = [q_{n-m}, \dots, q_n, \dots, q_{n+m}]^T$; $u = [\cos q_{n-m}, \dots, \cos q_n, \dots, \cos q_{n+m}]^T$; $v = [\sin q_{n-m}, \dots, \sin q_n, \dots, \sin q_{n+m}]^T$; $Q = q \circ q$ 。

利用得到的系数 A_n 即可计算出精确的相位 分布

$$Z_{\rm F} = \frac{\lambda_{\rm c}}{4\pi} \arctan\left(-\frac{A_{\rm 3}}{A_{\rm 2}}\right) \,. \tag{23}$$

将得到的粗糙形貌分布 Z_c 与精确相位分布 Z_F 相结合处理得到关于条纹级数的轮廓分布为

$$Z_{\rm R} = \left\{ \text{Round} \left[(Z_{\rm C} - Z_{\rm F}) \frac{2}{\lambda_{\rm c}} \right] \right\} \frac{\lambda_{\rm c}}{2}, \quad (24)$$

式中 Round()为取整函数。

将精确相位分布与条纹级数的轮廓分布相加即 可得到待测物体的形貌分布为

(17)

第 42 卷 第 5 期/2022 年 3 月/光学学报

 $Z_{\rm DVSI} = Z_{\rm F} + Z_{\rm R} \,. \tag{25}$

3 仿真与分析

为了验证所提方法的可行性,本研究对振动条件下的理想台阶面测量进行了模拟仿真。理想台阶 高度设置为 500 nm,白光 LED 光源的光谱曲线设 置为高斯分布,中心波长为λ_e=576 nm,半峰全宽 为 80 nm。扫描步长设置为 36 nm(λ_e/16),主通道 和副通道各生成 150 幅干涉图,在干涉图中引入一 系列随机振动倾斜平面,其中,x方向和y方向的倾 斜系数 $\alpha_n \in [-0.2, 0.2], \beta_n \in [-0.2, 0.2], 平动$ $移相量<math>\gamma_n \in [-\lambda_c/16, \lambda_c/16]$,干涉图的分辨率为 256 pixel×256 pixel,干涉图之间的最大振动幅度 大约为 $\lambda_c/8$ 。图4为干涉图中的一个像素点的相关 数据曲线。图4(a)显示出实际扫描位置在随机振动 情况下不再呈理想的线性分布。图4(b)为实际扫描 位置与理想的线性扫描位置之间的偏差,由图4(c)可 以看出,干涉光强在振动情况下发生了较大的畸变。

利用 PTI 算法对副通道的准单色光干涉图进行处理,得到倾斜相位平面后计算出干涉图上每个像素点的实际扫描位置。图 5(a)为其中一个像素点的真实扫描位置与 PTI 解算出的扫描位置的对比图。图 5(b)为解算结果与真实值之间的误差曲线,两者的最大误差小于 0.05 nm,表明 PTI 计算实际扫描位置具有很高的精度。

利用实际扫描位置对干涉图上每个像素点进行 相干峰位置的定位,得到相干峰位置对应的采样点。 以该采样点为中心,取前后各 40 张干涉图构成局部 采样区间。利用 LLS 对区间内的干涉图进行处理 得到精确的相位分布,最终复原出的台阶形貌分布 图如图 6(a)所示。复原台阶的平均高度值为 499.38 nm,与理想台阶高度之间的相对误差仅为 0.08%。随机选取复原台阶的一个水平方向截面, 并与理想台阶的同一位置的截面进行对比,图 6(b) 为两个截面的对比图,图 6(c)为两个截面轮廓之间 的误差。

此外,本研究对台阶轮廓的平均偏差 R。和均 方根偏差 R。分别进行了计算,两者的定义分别为

$$R_{a} = \frac{1}{M} \sum_{i=1}^{M} |Z_{i} - Z_{\text{mean}}|, \qquad (26)$$

图 6 仿真台阶的复原结果。(a)三维形貌图;(b)一维轮廓;(c)一维轮廓的误差

Fig. 6 Calculation results of the simulated step. (a) 3D topography; (b) 1D profile; (c) residual of 1D profile

$$R_{q} = \sqrt{\frac{1}{M} \sum_{i=1}^{M} |Z_{i} - Z_{\text{mean}}|^{2}}, \qquad (27)$$

式中,M 为所取轮廓的像素数, Z_{mean} 为复原台阶的 平均高度值, Z_i 为第 i 个像素点对应的形貌高度 值。理想台阶轮廓的 R_a 及 R_q 均为 0,计算得到复 原台阶轮廓的 R_a 和 R_q 分别为 0.07 nm 和 0.08 nm, 与理想台阶轮廓之间的误差均小于 0.1 nm,表明本 研究所提算法在振动情况下具有抗振性能,并且计 算精度较好。

4 实验与分析

为了验证本方法在实际测量中的性能,本研究 在振动环境下对标称值为 459.86 nm 的台阶板进 行了测量。实验采用的相机分辨率为 1024 pixel× 1024 pixel,帧频为 50 frame/s,LED 光源的中心波 长 λ_c =545 nm,半峰全宽约为 120 nm,副通道采用 的是中心波长为 550 nm,半峰全宽为 10 nm 的窄带 滤光片,通过驱动 PZT 带动 20 倍的 Mirau 物镜进 行移相,扫描频率为 50 Hz,扫描步长设定为 34 nm (λ_c /16),共扫描 110 步,扫描范围为 3.74 μ m。实验 采集的白光干涉图及准单色光干涉图如图 7 所示。

图 7 实验中采集的干涉图。(a)白光干涉图; (b)单色光干涉图

Fig. 7 Interferogram of the experiment. (a) White light interferogram; (b) monochromatic light interferogram
利用 PTI 算法单色光干涉图进行处理,所得结 果如图 8 所示。解算出的实际扫描位置与理想的线 性扫描位置之间的对比如图 8(a)所示,从图中可以 看出,受环境振动的影响,实际的扫描位置与理想的 线性扫描位置之间存在扫描偏差。图 8(b)为实际 扫描位置与理想的线性扫描位置之间的扫描偏差曲 线,其中最大的扫描偏差为 78 nm。

图 8 单色光干涉图的解算结果。(a)扫描位置;(b)扫描偏差 Fig. 8 Result obtained from the monochromatic light interferogram. (a) Scanning position; (b) scanning deviation

利用传统的白光干涉 WLPSI 算法^[12]、HDVSI 算法^[20]和本研究的 DVSI 算法对同一组数据进行 处理。在静态环境下对台阶板同一区域的测量结果 作为对比的参考值,如图 9(a)所示,三种方法所复原 出的三维形貌结果如图 9(b)~(d)所示。图 10(a)中 干涉图的水平方向虚线与垂直方向虚线分别对应于 台阶中的水平截面位置与垂直截面位置,两个位置 处的轮廓曲线对比分别如图 10(b)及 10(c)所示。 此外,本研究选取了垂直截面轮廓进行 R_a 和 R_q 的 计算。所得整个台阶的平均高度,垂直截面轮廓的 R_a 和 R_q 的计算结果如表 1 所示。

图 9 不同方法解算出的台阶形貌。(a)静态测量;(b) DVSI;(c) HDVSI;(d) WLPSI Fig. 9 Topography of the step calculated by different methods. (a) Measurement without vibration; (b) DVSI; (c) HDVSI; (d) WLPSI

表 1 不同方法得到的台阶平均高度以及 垂直截面轮廓的 R_a和 R_a

Table 1 Average height of the step and R_a , R_q of the vertical profile unit; nm

		1		
	Reference	DVSI	HDVSI	WLPSI
Height	459.620	460.354	447.287	908.483
R_{a}	0.485	0.515	2.897	57.284
$R_{ m q}$	0.604	0.634	3.306	84.022

从上述测量结果中可以看出,在振动的情况下 传统的白光移相干涉算法已经不能正确复原出待测 形貌了。HDVSI虽然能够大致恢复出待测台阶的 形貌轮廓,但是平均高度以及局部区域的面型仍然 存在较大的测量误差。相对而言,本研究方法 DVSI 能够较好地恢复出待测台阶的三维形貌,测 量得到的平均高度与参考值之间的相对误差小于 0.16%,R_a和R_a的偏差小于 0.04 nm,由此表明本 研究方法测量得到的台阶形貌与实际台阶具有较好 的一致性。

为了验证该算法应用于实际测量中的重复性, 本研究在振动环境下对台阶板的同一区域进行了 10次重复测试。采用 DVSI 算法对每一组台阶板 的平均高度以及同一个垂直截面轮廓的 R。和 R。 进行计算,结果如表 2 所示。

研究论文

第 42 卷 第 5 期/2022 年 3 月/光学学报

Т	able 2 Measurem	ent result of I	OVSI unit: nm
No.	Height	$R_{ m a}$	$R_{ m q}$
1	460.204	0.480	0.584
2	459.903	0.476	0.587
3	459.485	0.478	0.591
4	460.098	0.510	0.610
5	459.676	0.538	0.618
6	459.890	0.523	0.613
7	460.112	0.489	0.597
8	459.970	0.471	0.570
9	459.969	0.472	0.578
10	459 963	0 469	0 574

表 2 DVSI 的测量结果

计算得到 10 组数据中台阶高度的平均值为 459.927 nm, R_a 的平均值为 0.491 nm, R_q 的平均 值为 0.592 nm。将每组数据的平均高度、 R_a 和 R_q 与计算得到的平均值进行比较,得到三个参数的偏 差图如图 11 所示,图 11(a)为台阶平均高度的偏差 图,图 11(b)为 R_a 的偏差图,图 11(c)为 R_q 的偏 差图。

器件的形貌结构参数的重复性一般采用参数的 均方根偏差进行评价,均方根偏差的定义为

$$\sigma_{\rm r} = \sqrt{\frac{\sum_{i=1}^{N} (Z_i - Z_{\rm mean})^2}{N}}, \qquad (28)$$

式中,*Z_i*为第*i*组参数的值,*Z*_{mean}为所测参数的平均值,*N*为数据组数。计算得到10组数据中台阶

图 11 不同参数的偏差图。(a)平均高度;(b) R_a; (c) R_g

Fig. 11 Deviation of different parameters. (a) Average height; (b) R_{a} ; (c) R_{q}

高度的均方根偏差为 0.201 nm, R_a 的均方根偏差 为 0.023 nm, R_q 的均方根偏差为 0.016 nm。台阶 高度的均方根偏差小于 0.3 nm, R_a 和 R_q 的均方根 偏差均小于 0.03 nm,该结果满足一般的高精度测 量要求,由此表明所提算法的重复性精度较好。

5 结 论

本研究提出了一种适用于振动环境中的白光干 涉测量方法。该方法采用双通道光路结构,副通道 的准单色光干涉图用于实际扫描位置的测量,主通 道的白光干涉图用于待测物体的三维形貌复原。数 值仿真以及对比实验的结果表明,采用 PTI 能够精 确地解算出实际的扫描位置,采用 LLS 能够精确地 计算出待测物体的相位分布。研究结果表明本研究 方法在振动环境下能够较好地恢复出待测件的形貌 分布信息,有望应用于复杂振动环境下的高精度形 貌测量技术中。

参考文献

[1] Hariharan P, Roy M. White-light phase-stepping interferometry for surface profiling [J]. Journal of Modern Optics, 1994, 41(11): 2197-2201.

- [2] Lehmann P, Niehues J, Xie W C, et al. Measurement of rectangular edge and grating structures using extended low-coherence interferometry[J]. Proceedings of SPIE, 2012, 8430: 84300U.
- [3] Deck L, De Groot P. High-speed non-contact profiler based on scanning white light interferometry [J]. International Journal of Machine Tools and Manufacture, 1995, 35(2): 147-150.
- [4] Guo T, Hu C G, Chen J P, et al. Vertical scanning white-light interferometry for dimensional characterization of microelectromechanical system devices[J]. Acta Optica Sinica, 2007, 27(4): 668-672.
 郭彤, 胡春光, 陈津平, 等. 垂直扫描白光干涉术用 于微机电系统的尺寸表征[J]. 光学学报, 2007, 27 (4): 668-672.
- [5] Xue H, Shen W D, Gu P F, et al. Thickness measurement of thin film based on white-light spectral interferometry[J]. Acta Optica Sinica, 2009, 29(7): 1877-1880.

薛晖,沈伟东,顾培夫,等.基于白光干涉的光学薄 膜物理厚度测量方法[J].光学学报,2009,29(7): 1877-1880.

[6] Deng Q Y, Tang Y, Zhou Y, et al. High-resolution

研究论文

surface topography measurement based on frequencydomain analysis in white light interferometry [J]. Chinese Journal of Lasers, 2018, 45(6): 0604001. 邓钦元,唐燕,周毅,等.基于白光干涉频域分析的 高精度表面形貌测量[J].中国激光, 2018, 45(6): 0604001.

 [7] Du H L, Duan Z B, Sun X D. White light interference signal processing method based on Fourier frequency spectrum analysis[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0907001.

杜海龙,段照斌,孙晓东.基于 Fourier 频谱分析的 白光干涉信号解算方法[J].激光与光电子学进展, 2021,58(9):0907001.

- [8] Zhang Z L, Su J H. Simulation and reconstruction of 3D microscopic morphology of damaged optical film surface[J]. Acta Optica Sinica, 2021, 41(2): 0212002.
 张昭琳,苏俊宏.光学薄膜损伤表面三维微观形貌的 仿真与重构[J].光学学报, 2021, 41(2): 0212002.
- [9] De Groot P, Deck L. Surface profiling by analysis of white-light interferograms in the spatial frequency domain[J]. Journal of Modern Optics, 1995, 42(2): 389-401.
- [10] Sandoz P. An algorithm for profilometry by whitelight phase-shifting interferometry [J]. Journal of Modern Optics, 1996, 43(8): 1545-1554.
- [11] Larkin K G. Efficient nonlinear algorithm for envelope detection in white light interferometry [J]. Journal of the Optical Society of America A, 1996, 13(4): 832-843.
- [12] Sandoz P, Devillers R, Plata A. Unambiguous profilometry by fringe-order identification in whitelight phase-shifting interferometry[J]. Journal of Modern Optics, 1997, 44(3): 519-534.
- [13] Ai C, Novak E L. Centroid approach for estimating modulation peak in broad-bandwidth interferometry:

第 42 卷 第 5 期/2022 年 3 月/光学学报

US5633715A[P]. 1997-05-27.

- [14] Harasaki A, Schmit J, Wyant J C. Improved verticalscanning interferometry [J]. Applied Optics, 2000, 39(13): 2107-2115.
- [15] Shen M H, Hwang C H, Wang W C. Using higher steps phase-shifting algorithms and linear least-squares fitting in white-light scanning interferometry[J]. Optics and Lasers in Engineering, 2015, 66: 165-173.
- [16] Caber P J. Interferometric profiler for rough surfaces[J]. Applied Optics, 1993, 32(19): 3438-3441.
- [17] Schmit J, Olszak A G, Mcdermed S D. White-light interferometry with reference signal [J]. Proceedings of SPIE, 2002, 4777: 472209.
- [18] Olszak A G, Schmit J. High-stability white-light interferometry with reference signal for real-time correction of scanning errors[J]. Optical Engineering, 2003, 42(1): 54-59.
- [19] Liesener J, Davidson M, Groot P D, et al. Low coherence interferometry with scan error correction: US8902431B2[P]. 2014-12-02.
- [20] Chen D, Schmit J, Novak M. Real-time scanner error correction in white light interferometry[J]. Proceedings of SPIE, 2014, 9276: 92760I.
- [21] Tereschenko S, Lehmann P, Gollor P, et al. Robust vertical scanning white-light interferometry in closeto-machine applications [J]. Proceedings of SPIE, 2015, 9525: 95250Q.
- [22] Tereschenko S, Lehmann P, Zellmer L, et al. Passive vibration compensation in scanning whitelight interferometry [J]. Applied Optics, 2016, 55 (23): 6172-6182.
- [23] Duan M L, Zong Y, Zhu R H, et al. Phase-tilt iteration: accurate and robust phase extraction from random tilt-shift interferograms[J]. Optics and Lasers in Engineering, 2021, 142: 106595.